Comparing the Zagreb Indices
نویسندگان
چکیده
Let G = (V,E) be a simple graph with n = |V | vertices and m = |E| edges; let d1, d2, . . . , dn denote the degrees of the vertices of G. If ∆ = max i di ≤ 4, G is a chemical graph. The first and second Zagreb indices are defined as M1 = ∑
منابع مشابه
On leap Zagreb indices of graphs
The first and second Zagreb indices of a graph are equal, respectively, to the sum of squares of the vertex degrees, and the sum of the products of the degrees of pairs of adjacent vertices. We now consider analogous graph invariants, based on the second degrees of vertices (number of their second neighbors), called leap Zagreb indices. A number of their basic properties is established.
متن کاملNote on multiple Zagreb indices
The Zagreb indices are the oldest graph invariants used in mathematical chemistry to predict the chemical phenomena. In this paper we define the multiple versions of Zagreb indices based on degrees of vertices in a given graph and then we compute the first and second extremal graphs for them.
متن کاملStirling Numbers and Generalized Zagreb Indices
We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.
متن کاملZagreb, multiplicative Zagreb Indices and Coindices of graphs
Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The first, second and third Zagreb indices of G are respectivly defined by: $M_1(G)=sum_{uin V} d(u)^2, hspace {.1 cm} M_2(G)=sum_{uvin E} d(u).d(v)$ and $ M_3(G)=sum_{uvin E}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in G and uv is an edge of G connecting the vertices u and v. Recently, the first and second m...
متن کاملOn Comparing Variable Zagreb Indices for Unicyclic Graphs
Recently, the first and second Zagreb indices are generalized into the variable Zagreb indices which are defined by M1(G) = ∑ u∈V (d(u))2λ and M2(G) = ∑ uv∈E (d(u)d(v)), where λ is any real number. In this paper, we prove that M1(G)/n M2(G)/m for all unicyclic graphs and all λ ∈ (−∞, 0]. And we also show that the relationship of numerical value between M1(G)/n and M2(G)/m is indefinite in the d...
متن کامل